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Abstract

This paper studies a three-scale computational method that simultaneously considers the microstructure of hetero-

geneous materials, the macroscopic component, and the fracture origin such as interface or crack. The synergetic

application of the asymptotic homogenization and mesh superposition methods to problems with strong scale mixing is

emphasized. The scale gap between the microstructure and the component is very large, but the fracture origin is at the

middle scale between them. The overall behavior is analyzed by means of the homogenization of the heterogeneity

expressed by the unit cell model, while the fracture origin is modeled directly with the microscopic heterogeneity by

another microscopic mesh. The microscopic mesh is superposed onto the macroscopic mesh. This mesh superposition

method can analyze the non-periodic microscopic stress at the crack tip under a non-uniform macroscopic strain field

with high gradient. Hence, the present three-scale method can accurately focus on the behaviors at arbitrary scale

differently from the conventional hierarchical model. A demonstrative example of porous thin film on a substrate with

an interface crack was solved and the microscopic stress was analyzed at the crack tip considering the random dis-

persion of pores and the high gradient of macroscopic strain field. To solve the large-scale 3D problem with

approximately 80,000 solid elements, a renumbering technique and the out-of-core skyline solver was employed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The design and control of the hierarchical structural elements ranging from atomic or nanoscale to

microscale is supposed to be a promising approach toward the research and development of various ad-

vanced materials such as advanced composite materials, polycrystalline materials, and porous materials.
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Therefore, there is a growing need for multi-scale computational methods to study the correlation between

the microstructure and the macroscopic properties.

This paper aims at solving the mechanical behaviors of heterogeneous materials considering simulta-

neously the microstructure, the macroscopic component, and the fracture origin such as interface or crack.
The scale gap between the microstructure and the component is very large, but the fracture origin is at the

middle scale between them. Consequently, we want to focus on the behaviors at various scales depending

on the dimension of the fracture origin. The conventional hierarchical model is not applicable to this

problem. When analyzing the microscopic behaviors at the macroscopic crack tip, the multi-scale method

has to solve the microscopic problems under high gradient of macroscopic stress/strain field.

The asymptotic homogenization method coupled with the finite element method (FEM) has been sup-

posed to be the most effective tool especially for the analysis of the microstructural effect on the overall

properties of the above-mentioned heterogeneous media. This theory was first developed during the 1970s
and 1980s (Lions, 1981) and was applied to textile composite materials by Guedes and Kikuchi (1990).

During the last decade this theory has been the subject of several intensive researches, including the

exploitation of non-linear applications (Ghosh et al., 1996; Takano et al., 2000a, Terada and Kikuchi,

2001), studies on high-speed and practical modeling and numerical algorithms (Shephard et al., 1995; Fish

et al., 1997; Moulinec and Suquet, 1998), and the validation by experimental facts (Takano et al., 2001a,

2003a). The reason why this method is not applicable to problems studied in this paper is briefly recalled

below.

A microscopic unit cell model is used that represents the heterogeneous microstructure with periodicity
condition. If the microscopic crack is considered, we have to assume that the unit cell model with a crack is

repeated. In other words, a locally existing microscopic crack cannot be analyzed using this theory.

Basically, material with a local crack cannot be replaced by the equivalent homogenized property, because

the volume averaging depends on the dimension of the representative volume element (RVE). Caiazzo and

Costanzo (2001) derived the equivalent constitutive model for laminated composite materials with cracks.

However, in this case, the correlation between the cracks and the heterogeneous fibers’ arrangement has not

been taken into account. We can only apply the damage mechanics approach to such problems (Takano

et al., 1999; Fish and Yu, 2002). More importantly, the periodicity is assumed not only for the geometrical
architecture but also for the physical quantities such as displacements, strains and stresses (Takano et al.,

2000a, 2001a). To this end, microscopic analysis under high gradient of macroscopic fields may fail if the

asymptotic homogenization method is used. This problem was detected at an early stage (Fish et al., 1997;

Lee et al., 1999) but has not yet been resolved.

The higher-order theory and the non-local approach can provide a solution to this problem (Benallal

and Tvergaad, 1995; Triantafyllidis and Bardenhagen, 1996; Schraad and Triantafyllidis, 1997; Knockaert

and Doghri, 1999). Although the second-order theory can consider the non-linear distribution of the

macroscopic strain in the microscopic region under analysis, the gradient of the macroscopic strain is
modeled to be constant in this theory. Since the real microscopic region has finite and various dimensions, it

may lead to a critical error especially when a fracture origin such as a crack is considered.

Instead, together with the homogenization method, Fish and Wagiman (1993), Lee et al. (1999), and

Ghosh et al. (2001) used another microscopic model that directly expresses the microscopic heterogeneity of

the microscopic region to be analyzed. Lee et al. (1999) and Ghosh et al. (2001) used the microscopic finite

element mesh in a type of hierarchical model with a transition element. The transition element connects the

microscopic heterogeneous model and the homogenized model. Furthermore, Fish and Wagiman (1993)

superimposed the microscopic model onto the homogenized model. This finite element mesh superposition
method was originally presented by Fish (1992) under the name of s-version FEM, in a series of studies on

the adaptive FEM. The s-version FEM and other similar methods were applied to the modeling of smart

materials and structures (Robbins Jr. and Reddy, 1996), crack propagation problems (Rashid, 1998), and

elasto-plastic problems (Nakasumi et al., 2002). The above applications are limited to homogeneous
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materials, such as the crack propagation in metals. The authors have also applied this method, as the mesh

refinement method, in the modeling of textile composites (Takano et al., 1999).

Since the mesh superposition method can be applied to heterogeneous media the authors have studied its

applicability to various advanced materials and its numerical accuracy. Till date, the accuracy and efficiency
in modeling have been confirmed in the 2D analysis for the locally existing inclusion/void (Takano et al.,

2000b), microscopic crack behavior affected by reinforcing fibers (Takano et al., 2001b), and interface crack

behavior affected by pores (Takano et al., 2003b).

After these preliminary studies focused on the implementation and numerical accuracy of the mesh

superposition method, this paper presents the synergetic application of the mesh superposition and

homogenization methods for three-scale 3D analysis considering simultaneously the microscopic hetero-

geneity, crack, and macroscopic component. It should be noted that the dimensions of crack are set to be

between the dimensions of the microstructure and the macroscopic component. Also the robust and large-
scale equation solver for the 3D mesh superposition method is described. A numerical example of porous

thin film with a crack is discussed.
2. Framework of three-scale stress analysis and computational methods

In this study on multi-scale computational methods, the microstructure of advanced materials is con-

sidered to be in the order of nano- to micrometers. The dimension of the component ranges from 100 mm

to 1 m. Consequently, the scale gap between the microstructure and macroscopic component is more than

one thousand as shown in Fig. 1. Such a large gap can be correlated by means of the homogenization

method. The formulation of this method has been discussed in many papers mentioned in Section 1.

One of the merits of the multi-scale analysis is the calculation of microscopic behaviors. An important

issue is that, in the design of materials and components, the microscopic stress evaluation is required at the
crack tip, interface or in the local area where macroscopic stress is concentrated. Such fracture origin is

usually in the order of 10 lm to 1 mm, ranging between the microstructure and the macroscopic com-

ponent. The correlation between the fracture origin and the microstructure must be considered. Although

the scale gap is approximately 10–100, conventional and direct modeling is not applicable because 3D

modeling requires huge data in the range of 103–1003. We have to discuss the complex scale mixing and

solve the precise behavior at arbitrary scale depending on the dimension of the fracture origin. Hence, the

finite element mesh superposition method is employed to model such a fracture origin. Fig. 2 illustrates the
Fig. 1. Framework of three-scale stress analysis.



Fig. 2. Multi-scale modeling strategy.
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proposed multi-scale modeling strategy using both the homogenization and the mesh superposition

methods. One can define arbitrary the microscopic region to be studied precisely considering both the
fracture origin and the microscopic heterogeneity influenced by the macroscopic boundary conditions.

Previous studies (Takano et al., 1999; Guedes and Kikuchi, 1990; Ladeveze, 1995) have proposed a

hierarchical three-scale modeling strategy for the fiber reinforced composite materials, where single fiber is

defined as microscale, woven or knitted architecture is defined as mesoscale, and the component is defined

as macroscale. The mesostructure is defined by the periodic assembly of microstructures and becomes a unit

cell in the macrostructure. In other words, the mesoscale is uniquely defined for the target materials.

Therefore, the fracture origin studied in this study cannot be considered as the mesoscale in the conven-

tional multi-scale framework. On the other hand, in this paper, a different framework of the three-scale
problem has been studied and the finite element mesh superposition method has been used to bridge the

fracture origin and the other two scales as shown in Fig. 1.

Attention should be paid to the assumption of the periodicity of the microstructure in the analysis of

the microscopic behavior under a large macroscopic stress/strain gradient to consider the fracture origin as

the third scale. Fig. 3 illustrates the microscopic situation under a non-uniform macroscopic field near the

interface crack tip. (Refer to Fig. 1 from the previous paper (Takano et al., 2000a) for comparison.) If we

remind that the microstructure of various advanced materials has a finite dimension in reality, the mac-

roscopic stress/strain gradient in the microstructure can be illustrated as in Fig. 4. In this figure, u0 denotes
the macroscopic displacement. The macroscopic strain gradient is strongly non-linear in the microstructure

with a finite dimension. The higher-order theory can only consider a case that the strain gradient is constant

in the microstructure. On the other hand, the finite element mesh superposition method is applicable even if

the strain gradient is high and not constant.
Fig. 3. Modeling of microscopic behaviors under non-uniform macroscopic field.



Fig. 4. Non-linear macroscopic strain field with high gradient.
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3. Finite element mesh superposition method

The finite element mesh superposition method (Fish, 1992; Fish and Wagiman, 1993) uses two inde-

pendent meshes. One of them is the macroscopic mesh that uses the homogenized material model reflecting

microscopic heterogeneity. The other one is the microscopic mesh that is arbitrarily superimposed onto the

macroscopic mesh, without taking care of matching nodes. The microscopic heterogeneity is modeled di-
rectly on the microscopic mesh and local heterogeneity such as void, inclusion, crack, interface, etc.

(Takano et al., 2000b, 2001b, 2003b).

As shown in Fig. 5, X is the overall region and C is its boundary. The local region, onto which the

microscopic mesh is superimposed, is XL. XG is defined as X n XL. CGL is the boundary between XG and XL.

The external force p is supposed to be applied to the macroscopic boundary only and is not applied directly

to the microscopic mesh XL in this paper. Hereafter, the suffix G denotes the global (macroscopic) quantity

and the suffix L denotes the local (microscopic) quantity.
Fig. 5. Setting of macroscopic domain and microscopic region.
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The displacement is written as follows:
u ¼ uG on XG; CGL

uG þ uL on XL

�
ð1Þ
It should be noted that the displacement is interpolated in the finite element by the shape function N . The

mesh superposition method is one of the techniques that allow two meshes with different element sizes. The

shape functions of the two meshes connect the macro- and microscopic displacement fields. To retain
continuity at the boundary CGL, we assume that the following equation holds true.
uL ¼ 0 on CGL ð2Þ
The constitutive equations in each region are written as follows:
r ¼ DGBGuG on XG

DLðBGuG þ BLuLÞ on XL

�
ð3Þ
where D and B denote the elastic stress–strain matrix and strain–displacement matrix. To assure the

consistency between the macro- and microscopic governing equations, the homogenized constitutive

equation should be predicted by the asymptotic homogenization method accurately for arbitrary complex
3D microstructure architecture. The strain and stress are discontinuous at the boundary CGL. The

microscopic region XL can be arbitrary only if the homogenized constitutive model can be predicted

accurately for XL in this paper’s setting.

Above relations are substituted into the following governing equation.
Z
X

�eTrdX ¼
Z
C

�uTpdC ð4Þ
where �u and �e are the virtual displacement and strain, respectively. Note again that, in this problem setting

in Fig. 5, the external force is applied only to the macroscopic mesh. However, it is not the limitation of the

mesh superposition method, and the external force, body force, and thermal stress can be considered if

needed (Fish, 1992; Takano et al., 2003b).
KG KGL

ðKGLÞT KL

� �
uG

uL

� �
¼ f

0

� �
ð5Þ
where
KG ¼
Z
XG

ðBGÞTDGBG dXG þ
Z
XL

ðBGÞTDLBG dXL ð6Þ
KGL ¼
Z
XL

ðBGÞTDLBL dXL ð7Þ
KL ¼
Z
XL

ðBLÞTDLBL dXL ð8Þ
f ¼
Z
C
NTpdC ð9Þ
The stiffness matrices KG and KL are calculated using the macroscopic and microscopic meshes, respec-
tively. The interaction between two meshes is expressed by KGL. Hence, the finite element mesh superpo-

sition is advantageous over the conventional zooming method (Takano et al., 2003b).
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The numerical integration of Eqs. (6) and (7) should be done cautiously because the mesh size of the

macro- and microscopic meshes is significantly different when considering the microscopic heterogeneity.

We found that Eq. (6) can be approximated by the following simple integration.
Fig. 6.
KG �
Z
X
ðBGÞTDGBG dX ð10Þ
The numerical integration of Eq. (7) has been described in detail in the authors’ previous paper (Takano

et al., 2001b).
One of the critical issues in applying the mesh superposition method to multi-scale analysis of hetero-

geneous media is numerical accuracy. In the region where the microscopic mesh is superposed, both the

macroscopic and microscopic equilibrium equations are solved simultaneously. Hence, the consistency

between the macro- and microscopic equations are essential. That is, the use of the homogenization method

is very important to predict the macroscopic properties accurately for arbitrary complex microstructure

architecture (Takano et al., 2003a). More importantly, due to the discontinuity in the material models at the

boundary CGL of the macroscopic model and microscopic model, the margin of error near the boundary

CGL was not negligible (Takano et al., 2003b). Generally the modeling of heterogeneity with randomness
inevitably leads to the numerical error near the boundary region of the microscopic model. There are many

successful researches that aimed at predicting the overall properties taking randomness into consideration

(Torquato, 1998; Buryachenko et al., 2003). However, the error appears in the analysis and evaluation of

the microscopic stress by the homogenization method (Takano et al., 2002). That is also true in the analysis

by the mesh superposition method. However, we confirmed that very good accuracy is achieved at the inner

region of the microscopic mesh (Takano et al., 2000b, 2001b, 2003b). This factor has been considered in the

numerical example in this paper.

Another significant point is the large-scale and robust equation solver. The stiffness matrix in Eq. (5)
consists of four blocks, and is not the band matrix due to the interactive term KGL. This implies that the 3D

large-scale analysis is very difficult. Therefore, some researchers are attempting to use the preconditioned

iterative solver (Shinmura et al., 2002; Okada et al., 2003). Shinmura et al. (2002) found that the con-

vergence is not obtained for some cases. It seems to be related to the difference in mesh size between

the macro- and microscopic meshes. It is possible that the discontinuous material model might ren-

der the problem ill-conditioned. The same was true in the authors’ preliminary studies on a crack problem.

On the contrary, the renumbering technique works very well for the block-wise matrix in Eq. (5). Among

some renumbering techniques, we employ Reverse-Cuthill–Mckee (RCM) method (Murata et al., 1985).
Fig. 6 shows one example of the effect of RCM method. It can be said that renumbering is also effective in

cases where multiple microscopic meshes are superimposed simultaneously.
Comparison of required memory between renumbered and non-renumbered stiffness matrices by mesh superposition method.
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4. Numerical example

To demonstrate the effectiveness of the proposed three-scale finite element method, we use a porous thin

film coated substrate with an interface crack as shown in Fig. 7. The final goal in this numerical example is
to analyze the microscopic stress distribution near the interface crack tip, considering the effects of the

microscopic pores that are randomly dispersed under the macroscopic boundary condition. The thin film is

supposed to be TiO2 with randomly dispersed straight pores. The cross section is supposed to be circular

with a diameter of 6.2 lm. The porosity ratio is 30%. The substrate is supposed to be SiO2. The Young’s

modulus and poisson’s ratio of TiO2 are 228 GPa and 0.27, respectively, whereas those of SiO2 are 68 GPa

and 0.19, respectively. The scale gap between the representative dimensions of the macroscopic component

and the microstructure is approximately 330 and that between the interface crack and microstructure is

approximately 40, which corresponds to the setting of the three-scale framework shown in Fig. 1. In the
analysis by the mesh superposition method, the whole region of this component is X and the porous thin

film is modeled macroscopically by the equivalent material model predicted by the asymptotic homoge-

nization theory. The microscopic region XL is supposed near the crack tip, where the constitutive materials

and pores are directly expressed. By superimposing the microscopic region onto the overall model, the

microscopic stress is analyzed under the high gradient of the macroscopic stress/strain field.

The boundary condition shown in Fig. 8 is assumed. Due to the symmetry, half a region is analyzed as

the macroscopic model. It is uniformly subdivided by eight noded solid elements. The number of elements

and nodes of the macroscopic mesh are 32,000 and 35,771, respectively.
Fig. 7. Porous thin film coated substrate with interface crack.

Fig. 8. Macroscopic model and boundary condition.
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To analyze the microscopic stress at the interface crack tip considering the random dispersion of pores,

the microscopic mesh shown in Fig. 9 is used. The number of solid elements and nodes are 46,080 and

52,385, respectively. Therefore, the total number of elements and nodes equal 78,080 and 88,156, respec-

tively. The total d.o.f. is 264,468. Together with the RCM renumbering, the out-of-core skyline method
(block skyline method) (Murata et al., 1985) is used. This solver can solve 3D problem of more than

100,000 elements on a standard personal computer (CPU: Pentium IV) with 60GB hard disk.

The microscopic mesh is superimposed onto the macroscopic mesh at the interface crack tip as shown in

Fig. 10. The figure also shows the macroscopic mesh to which a homogenized material model is applied.

The difference in element size between the macroscopic and the microscopic meshes is more than 10. The

accuracy has been validated for cases with such a large difference in element size (Takano et al., 2001b,

2003b).

The homogenized material properties of porous TiO2 are predicted by the asymptotic homogenization
method using a unit cell model as shown in Fig. 11. Considering that the pores are randomly distributed,

only a single pore is modeled in the unit cell for homogenization.

Fig. 12 shows the macroscopic behaviors without using the mesh superposition method. The normal

stress rz at the crack tip in porous TiO2 film is plotted in Fig. 12. Since the porous TiO2 is modeled using

equivalent homogenized material in these results, the effect of microscopic heterogeneity has not been

observed. The microscopic mesh in Fig. 9 is superimposed on the specified region shown in Fig. 12 with a

high gradient of macroscopic stress/strain.

The results of the proposed three-scale analysis by homogenization and mesh superposition methods are
shown below. Fig. 13 shows the microscopic stress rz. It is to be noted that the boundary region of the

microscopic mesh is excluded in this figure because of the numerical error that appears in the boundary

region due to the mesh superposition as mentioned in Section 3. However, we mention later that the
Fig. 9. Microscopic model.



Fig. 10. Superposition of microscopic mesh onto macroscopic mesh.

Fig. 11. Unit cell model for homogenization.

Fig. 12. Macroscopic stress near interface crack and microscopic region to be analyzed.
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numerical error around CGL does not lead to a critical problem in analyzing real materials with random
microstructure.



Fig. 13. Analyzed microscopic stress distribution by proposed three-scale method.

Fig. 14. Comparison of microscopic stress and macroscopic stress at crack tip.

Fig. 15. Comparison of microscopic stresses in microscopic region.

N. Takano, Y. Okuno / International Journal of Solids and Structures 41 (2004) 4121–4135 4131
It is interesting to note that the microscopic stress is non-periodic with respect to the microstructure
model. This is advantageous compared to the conventional homogenization method. This is clearly indi-

cated by the plot of microscopic stress shown in Fig. 14. The complex microscopic stress distribution is

obtained because of the high gradient of macroscopic stress at the crack tip and also due to the pores. The



Fig. 16. Analyzed stress field in and around microscopic region showing discontinuity at boundary CGL.

Fig. 17. Detailed distribution of analyzed stress and displacement near crack tip. (a) Comparison of macroscopic and microscopic

stress. (b) Inner region of microscopic mesh. (c) Comparison of macroscopic displacements.
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random dispersion of pores also influences the microscopic stress distribution. Fig. 15 shows the stress

distribution around specific pores. The high macroscopic stress and the narrow gap between the neigh-

boring pores contributed to the increase in microscopic stress.
Fig. 16 shows an example of the analyzed stress field by superimposing the microscopic mesh. The

macroscopic stress, without using the mesh superposition method, has also been plotted. Due to the dis-
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continuity of material models in the proposed method, the stress is not continuous at boundary CGL and

includes a numerical error. However, the boundary region to be excluded in stress evaluation is not very

wide and the stress distribution in Fig. 13 is reliable. Another example is shown in Fig. 17. With respect to

the inner region in Fig. 17(b), the microscopic stress is higher than the macroscopic stress by 1/(1) porosity
ratio)¼ 1/0.7 (dashed line). This is due to the randomness of pores. The macroscopic stress is the averaged

one over much wider region. On the other hand, the present method provides more precise distribution in a

microscopic region. By taking various dimensions of the microscopic region, the stress can be analyzed at

arbitrary resolution microscopically. The consistency of the macro- and microscopic stresses are assured in

this case, however it depends generally on the scale gap between the macro- and microscopic models and

the limitations of the asymptotic homogenization. Moreover, the displacement field is also very complex as

shown in Fig. 17(c). The periodicity of the stress field is lost in this local region due to the random dis-

persion of pores and the high gradient of macroscopic strain. By taking arbitrary microscopic region, the
precise microscopic stress and displacement can be analyzed, which are deviated from the macroscopic ones

near the fracture origin. These results indicate the necessity and importance of the microscopic stress

analysis.
5. Conclusion

This paper described the synergetic application of the asymptotic homogenization and the mesh

superposition methods to a three-scale 3D problem with scale mixing issue for various advanced materials.

The heterogeneous microstructure, macroscopic component, and interface crack, whose representative

dimension is between that of the microstructure and the component, were studied simultaneously. Dif-

ferently from the conventional hierarchical modeling strategy, the finite element mesh superposition
method was used to consider the interface crack, the microscopic heterogeneity, and the influence of the

macroscopic boundary conditions. The use of the homogenization is essential to predict the consistent

constitutive model accurately for complex 3D microstructure architecture together with the mesh super-

position method. The microscopic stress can be analyzed under non-uniform macroscopic stress field with

high gradient. The effect of the randomness of the microstructure was also considered, and it was found to

influence the microscopic stress. To solve 3D problems by the mesh superposition method, a renumbering

technique and out-of-core skyline method were employed. A numerical example with approximately 80,000

elements was discussed in this paper. The proposed three-scale finite element method enables us to analyze
the microscopic behavior in locally and non-periodically heterogeneous region with arbitrary dimensions

including crack, void, inclusion, etc. for various advanced materials and components.
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